
40 The Delphi Magazine Issue 53

The Observer
Pattern Observed
by Tomasz Stanczak

In Issue 51 (November 1999) I
found an interesting article

about the Observer Pattern, by
Peter Hinrichsen. We faced similar
needs in our last software
development contract and solved
them using a similar approach, so I
thought I would share our experi-
ence in the areas Peter did not
cover in his article.

At the end of the article Peter
describes a ‘push’ model, and
states that, while being more effi-
cient, it is more challenging to
implement. Well, this is true, but it
is not that difficult after all, and
here is why.

Our contract was for a quite a big
application, with hundreds of
forms and classes, and hundreds of
thousands of lines of code. The
observer pattern was used
throughout the application to
achieve instant communication
between the various layers of the
application. A ‘pull’ model proved
to be too inefficient for our needs,
so we decided to implement a
‘push’ model.

Peter states that this requires a
tighter coupling between subject
and observers. We have managed
to implement a model that is
loosely coupled, very flexible, and
that notifies only about items
which have really changed.

If you think about Peter’s exam-
ple implementation, it is obvious
that the method DataToObserver
must be changed to achieve this. It
must have parameters describing
what has been changed. A simple
solution using numerical con-
stants has the disadvantage of
being not easily readable and is
also exposed to the risk of duplicat-
ing values (that’s actually the same
pattern which is used by Windows
messages). An enumerated type
doesn’t allow encapsulation, such
a type must either be visible appli-
cation-wide, so different subjects

would require to share it and it
wouldn’t be possible to extend
subjects without extending this
common enumeration type, or the
declaration of the DataToObserver
method would have to be changed
with each subject, which in turn
means changing the abstract base
interface.

While analyzing the possible
solutions, we came to the following
conclusion: it’s all about objects,
so why not use objects to carry
information? Let’s define a class
TSubjectMessage as a base class. If
we change the method mentioned
aove to:

DataToObserver(
Message: TSubjectMessage)

we would allow observers to react
only to changes that are relevant
for them. It is not the end of the
required modifications, of course:
it can’t be called by a parameter-
less UpdateObservers method, we

would have to modify the subject
to include setter methods for all
changes that in turn would call
UpdateObservers with the same
parameter, that would then be
used to notify observers.

Now to have different messages
we would just inherit from
TSubjectMessage. The benefits are
obvious: it makes a black-box
approach possible. Adding a new
subject that uses new messages is
just a matter of defining new
TSubjectMessage descendants for
new notification types. No source
code changes to the original
abstract framework are required.

While using objects to carry
information allows much more
flexibility, we could extend the
base class to accept parameters,
like Delphi’s TParams class (see
Listing 1).

Now you are able to send notifi-
cations not only about items
changed, but the notification
object could contain useful infor-
mation itself. Observers are able to
recognise what has changed and
how, and so refresh only when
required. And all that without the
subject knowing anything about
attached observers, absolutely
loosely coupled.

procedure TPortfolio.SetPrice(const StockName: string; Value: Real);
var
i: integer;

begin
for i:=0 to FList.Count-1 do begin
if CompareText(TStockPrice(FList).StockName,StockName) = 0 then begin
if TStockPrice(FList).Price <> Value then begin
FPrice := Value;
Msg := TStockChangeMessage.Create(nil);
Msg.CreateParam(ptString,'StockName');
Msg.Params['StockName'].AsString := FStockName;
Msg.CreateParam(ptReal,'Price');
Msg. Params['Price'].AsReal := Value;
UpdateObservers(Msg);

end;
break;

end;
end;

end;
procedure TSubjectAbstract.UpdateObservers(Message: TSubjectMessage);
var
i: integer;

begin
try
for i:=0 to FObservers.Count-1 do
TObserverAbstract(FObservers[i]).DataToObserver(Message);

finally
If Message.Owner=nil then
Message.Free;

end;
end;
procedure TObserverBarChart.DataToObserver(Message: TSubjectMessage);
begin
if (Message is TStockChangeMessage) and
Displaying(Message.Params['StockName'].AsString) then
RefreshStock(Message.Params['StockName'].AsString,
Message.Params['Price'].AsReal);

end;

➤ Listing 1



January 2000 The Delphi Magazine 41

A good example of the use of this
approach might be a drill down
action. Imagine having a grid with
data entered in different ways:
some manually from a data entry
form, other data as part of an auto-
matic data import through email.
Double-clicking on a grid row may
send a message with the row pri-
mary key as a message parameter.
Only the observer responsible for
this very row would react and
come to the foreground.

I admit that the approach
requires more code than the solu-
tion of ‘pull’ observers, but it is
much more efficient and flexible.
There is, of course, room for
improvements, such as implemen-
tation of the BeginUpdate/EndUpdate
method pair within the TSubject-
Abstract. It enables us to defer noti-
fications when you want to make
more changes at once and only
notify the observers at the very
end.

The implementation could be
wrapped up as VCL components,
so it is not necessary for the sub-
ject to inherit from TForm and it can
be used not only on forms or
frames but within any other kind of
object, with appropriate notifica-
tion. This is, in fact, the way we
have implemented the pattern in
our framework.

Furthermore, there is a place for
an implementation sending the
notifications within a background
thread, instead of using timers.
Well, OK, this is much more chal-
lenging (not because of the thread-
ing itself, but because of the
synchronisation issues). However,
maybe readers could provide a
solution from their experience? Do
email me if you have anything new
to add, or any comments on the
solution we used.

Tomasz Stanczak (email tomasz@
rtsoftware.com) is one of the
proprietors of r&t software, a
German-Polish company specialis-
ing in custom software design and
development in Delphi. A signifi-
cant amount of thought on this
topic has come from Krzysztof
Janiszewski, his partner (email
krzysztof@rtsoftware.com).


